糖尿病康复,内容丰富有趣,生活中的好帮手!
糖尿病康复 > 数字角频率和模拟角频率和物理频率和归一化角频率的关系 及FFT频率和实际物理频率的

数字角频率和模拟角频率和物理频率和归一化角频率的关系 及FFT频率和实际物理频率的

时间:2019-08-16 17:19:02

相关推荐

数字角频率和模拟角频率和物理频率和归一化角频率的关系 及FFT频率和实际物理频率的

4种频率及其数量关系

实际物理频率表示AD采集物理信号的频率,fs为采样频率,由奈奎斯特采样定理可以知道,fs必须≥信号最高频率的2倍才不会发生信号混叠,因此fs能采样到的信号最高频率为fs/2。

Ω角频率是物理频率f的2*pi倍,这个也称模拟频率。

归一化频率是将物理频率按fs归一化之后的结果,最高的信号频率为fs/2对应归一化频率0.5,这也就是为什么在matlab的fdtool工具中归一化频率为什么最大只到0.5的原因。

圆周频率是归一化频率的2*pi倍,这个也称数字频率ω。

Ω=2πf;ω=ΩT=Ω/fs=2πf/fs=2π Ω/Ωs

有关FFT频率与实际物理频率的分析

做n个点的FFT,表示在时域上对原来的信号取了n个点来做频谱分析,n点FFT变换的结果仍为n个点。

换句话说,就是将2pi数字频率w分成n份,而整个数字频率w的范围覆盖了从0-2pi*fs的模拟频率范围。这里的fs是采样频率。而我们通常只关心0-pi中的频谱,因为根据奈科斯特定律,只有f=fs/2范围内的信号才是被采样到的有效信号。那么,在w的范围内,得到的频谱肯定是关于n/2对称的。

举例说,如果做了16个点的FFT分析,你原来的模拟信号的最高频率f=32kHz,采样频率是64kHz,n的范围是0,1,2…15。这时,64kHz的模拟频率被分成了16分,每一份是4kHz,这个叫频率分辨率。那么在横坐标中,n=1时对应的f是4kHz, n=2对应的是8kHz, n=15时对应的是60kHz,你的频谱是关于n=8对称的。你只需要关心n=0到7以内的频谱就足够了,因为,原来信号的最高模拟频率是32kHz。

这里可以有两个结论。

第一,必须知道原来信号的采样频率fs是多少,才可以知道每个n对应的实际频率是多少,第k个点的实际频率的计算为f(k)=k*(fs/n)

第二,你64kHz做了16个点FFT之后,因为频率分辨率是4kHz,如果原来的信号在5kHz或者63kHz有分量,你在频谱上是看不见的,这就表示你越想频谱画得逼真,就必须取越多的点数来做FFT,n就越大,你在时域上就必须取更长的信号样本来做分析。但是无论如何,由于离散采样的原理,你不可能完全准确地画出原来连续时间信号的真实频谱,只能无限接近(就是n无限大的时候),这个就叫做频率泄露。在采样频率fs不变得情况下,频率泄漏可以通过取更多的点来改善,也可以通过做FFT前加窗来改善,这就是另外一个话题了。

用DFT进行谱分析的误差问题

DFT可用来对连续信号和数字信号进行谱分析,在实际分析过程中,要对连续信号采样和截断,就会引发误差,下面介可能产生误差的三种现象。

(1)混叠现象。对连续信号进行谱分析是,首先要对其采样,变成时域离散信号后才能用DFT(FFT)进行谱分析。采样速率Fs必须满足奈奎斯特采样定理,否则会在Fs/2附近发生频谱混叠现象。

(2)栅栏效应(栅栏现象,也称栅栏效应,对一函数实行采样,即是抽取采样点上的对应的函数值。其效果如同透过栅栏的缝隙观看外景一样,只有落在缝隙前的少数景象被看到,其余景象均被栅栏挡住而视为零,这种现象称为栅栏效应。)。N点DFT是在频率区间[0,2π]上对时域离散信号的频谱进行N点等间隔采样,而采样点之间的频谱是看不到的。就像上文中举的例子,原来信号可能会在5KHz出有频谱的分量,但我们的频率分辨率只有8KHz,这就导致我们无法观察在5KHz的分量。要想观察,我们就必须提高频率分辨率。对于有限长序列,可以在原序列尾部补零;对于无限长序列,可以增大截取长度及DFT变换区间长度,从而使频域采样间隔变小,增加频域采样点数和采样点位置,使原来漏掉的某些频谱分量被检测出来。对于连续信号的谱分析,只要采样速率Fs足够高,且采样点数满足频率分辨率要求,就可以认为DFT后所得离散谱的包络近似代表原信号的频谱。

(3)截断效应。实际中遇到的序列x(n)可能无限长的,用DFT进行谱分析时,必须将其截断,形成有限长序列。而截断后序列的频谱必将发生变化。主要有两个方面:

①泄露 :原来的序列的频谱是离散谱线,经截断后,使原来的离散谱线向附近展宽。通常称这种展宽为泄露。泄露使频谱变模糊,频率分辨率降低。

②谱间干扰。

离散信号傅里叶变换的周期性讨论

要分析这个,我们先从Laplace变换与Z变换之间的关系谈起。

由,得z平面与s平面的关系图

图中的关系有以下几点:

s平面的虚轴映射到z平面的单位圆上

s平面的负半轴映射到z平面的单位圆内

s平面的正半轴映射到z平面的单位圆外

Laplace变换是用于连续信号的变换,相对应的z变换是应用到z平面的变换。因此从另一个角度,上面谈到的角频率(模拟频率)对应的是s平面,圆周频率对应的是z平面(也是为什么称为圆周频率的原因)。

现在我们来看一下s平面虚轴上模拟频率的变换将会导致z平面单位圆上如何变化:

当模拟频率在s平面的虚轴上从0变到fs 时,数字频率在z平面单位圆上从0变到2 pi。

当模拟频率在s平面的虚轴上从2fs变到4fs时,数字频率在z平面单位圆上仍然从0变到2 pi。

。。。。。。z平面如此循环重复

我们知道离散信号的傅里叶变换对应到单位圆上的z变换,因此上面的结论就验证了为什么离散信号的傅里叶变换是周期性:根本原因所是单位圆上的周期性。

考虑到我们实际应用中可选择一个周期,这也能够解释:因为实际信号的频率总是在fs/2以下,这就对应到z平面单位圆上的0~pi,在一个周期范围内就可以进行信号分析了。

数字角频率和模拟角频率和物理频率和归一化角频率的关系 及FFT频率和实际物理频率的关系分析

如果觉得《数字角频率和模拟角频率和物理频率和归一化角频率的关系 及FFT频率和实际物理频率的》对你有帮助,请点赞、收藏,并留下你的观点哦!

本内容不代表本网观点和政治立场,如有侵犯你的权益请联系我们处理。
网友评论
网友评论仅供其表达个人看法,并不表明网站立场。