糖尿病康复,内容丰富有趣,生活中的好帮手!
糖尿病康复 > 传热透气膜及用传热透气膜的传热透气组件的制作方法

传热透气膜及用传热透气膜的传热透气组件的制作方法

时间:2022-08-19 20:51:33

相关推荐

传热透气膜及用传热透气膜的传热透气组件的制作方法

本发明涉及冷暖设备

技术领域:

,更具体地说,它涉及一种传热透气膜及用传热透气膜的传热透气组件。

背景技术:

:冷暖设备在使用过程中,在供气时,需要使冬季户外的新鲜但寒冷的干燥空气通过,在排气时,使被取暖的室内的污浊但温暖的湿度高的空气通过。因此,对于冷暖设备,不仅需要考虑其是否能达到高绝热化、高气密化的效果,还需要考虑使用冷暖设备的同时,供气和排气给室内空气带来的污染问题。为了使用人群的身体健康,研究人员将对冷暖设备的更多关注重点转移至供气与排气过程中,冷暖设备对空气的净化程度方面。公开号为cn101266109a、公开日为9月17日的专利中公开了全热交换器及其制造方法,将多张由六边形状的隔膜和粘接在该隔膜上而形成流路的流路形成部件构成的热交换部件上下层叠、经由该隔膜对两种气体的显热和潜热进行热交换,上述流路形成部件,具有沿着上述隔膜的外缘设置的多个框部件、和在两个该框部件间以既定间隔配置且宽度尺寸比该框部件的宽度尺寸小的细肋部件,且包括具有与上述流路的入口、出口侧的三角形部对应的三角形状轮廓并形成有占上述三角形部的面积的70%以上且95%以下的范围的一个或多个通孔的加强用三角形平板状瓦楞板部件,上述瓦楞板部件是上壁面、下壁面和连接该上壁面与下壁面的多个肋片一体地成形而构成的。在其中的实施例1中,公开了具体的实施方式:将多张由六边形状的隔膜和与隔膜粘接而形成流路的流路形成部件所组成的热交换部件上下层叠、经由隔膜使两种气体的显热和潜热进行热交换的相向流型全热交换器。热交换部件形成为具有四边形部和配置在其两端的三角形部的六边形部的形状。形成供气流路的供气用热交换部件和形成排气流路的排气用热交换部件交替地层叠。供气用热交换部件和排气用热交换部件方向不同。即,供气用热交换部件和排气用热交换部件的入口(供气入口、排气入口)、出口(供气出、排气出口)在上下不重叠地被配置(形成)在六边形的不同的边上。其中,隔膜是将亲水性高分子薄膜涂覆在以例如聚乙烯、聚丙烯、醋酸纤维、聚四氟乙烯等为原材料的多孔质片材的表面上而成,具有透气的作用,因此,隔膜也通常被称为透气膜。在使用过程中,空气穿过隔膜进行传输,细肋与隔膜接触之处,细肋对隔膜形成支撑作用,但在未设置细肋之后,隔膜需要承受空气穿过所产生的作用力,容易导致隔膜的使用寿命不够长。且细肋与隔膜之间的接触面积较小,且隔膜与细肋的之间的材质不同,导致热量难以通过隔膜进行顺利传送。为了减少上述问题的产生,也有现有技术中,如图1和图2所示,隔膜6通常由基层1以及在基层1的外表面包覆的亲水性高分子薄膜组成,再在薄膜的外表面上设置支撑层5(与上述现有技术中的框部件相同),形成传热组件,使获得的传热件具有较好的力学强度。再将传热组件相互叠加,再连接风轮,形成全热交换器。上述现有技术中,由于多孔质片材和亲水性高分子薄膜中含有较多的孔隙,使隔膜6起到较好的透气效果。然而,在制造隔膜6的过程中,通常采用一体成型的方式,获得孔质片材和亲水性高分子薄膜连接成一体的隔膜6,因此,打造模具所投入的成本较高且操作较为复杂。若需要生产不同尺寸的隔膜6时,需要打造适用于不同尺寸隔膜6生产的模具,因此,进一步增大了投入的成本。与此同时,由于多孔质片材和亲水性高分子薄膜之间紧密贴合,且多孔质片材为聚乙烯、聚丙烯、醋酸纤维或聚四氟乙烯,传热的效果依旧较差,因此,空气在交换的过程中,仍然难以进行较好的热量传递。技术实现要素:针对现有技术存在的不足,本发明的第一个目的在于提供一种传热透气膜,其具有较好的传热效果、透气效果和强度的优点。本发明的第二个目的在于提供一种用传热透气膜的传热透气组件,其具有较好的传热效果、透气效果的优点。为实现上述第一个目的,本发明提供了如下技术方案:一种传热透气膜,包括多孔质的基层、覆盖于基层的表面的无纺布层以及覆盖于无纺布层的表面的亲水层;所述基层与无纺布层之间通过粘接层连接;所述亲水层为亲水性高分子薄膜;所述基层包括聚乙烯层、聚丙烯层、醋酸纤维层、聚四氟乙烯层中的一种。通过采用上述技术方案,基层采用聚乙烯层、聚丙烯层、醋酸纤维层、聚四氟乙烯层中的一种制成,具有稳定的化学性能,在进行空气的热交换过程中,不易出现细菌滋生的现象,也使传热透气的效果更为持久。经过热压获得的无纺布层在具有一定的紧致程度的同时,还具有较好的透气效果。且在本发明中,在基层与无纺布层之间采用了粘接层进行连接,有助于使两层之间形成较为充分的接触,且无纺布层经过热压等处理后获得,具有一定的紧实的效果,并且使热量能够顺利通过两层,从而起到较好的传热作用。且在本发明中,采用无纺布层与粘接层相互结合的另一主要目的在于,经热压等处理后获得的无纺布层在粘接层的粘接作用下,可达到较好的具有较好的强度,不易出现破损的现象。亲水性高分子薄膜具有良好的亲水效果,能使空气中的水气通过,在通过的过程中,可以过滤其中的杂质或有害物质。且亲水性高分子薄膜的透气性好,有助于热量的传递。因此,本发明中采用基层、粘接层、无纺布层、亲水层一同配合,有助于提高形成的传热透气膜的传热、透气效果,且在提高基层、粘接层、无纺布层之间的接触效果的同时,还有助于提高获得的传热透气膜的拉伸强度。进一步优选为:所述无纺布层通过如下方式制备获得:步骤一,将重量份数为0.05-0.1份的纳米二氧化钛、0.3-0.4份的纳米微晶纤维素胶体、0.005-0.008份的石墨烯、0.2-0.5份的纤维素凝胶交联剂、90-95份的乙醇进行充分混合,获得浸渍液;步骤二,将经过热压处理、扎针处理后的无纺布充分浸没于浸渍液中,浸渍并超声波处理30-45min,取出,烘干,获得无纺布层。通过采用上述技术方案,浸渍液中,纳米二氧化钛粒径小,比表面积大,且具有较好的分散效果,且具有较好的亲水性,可在乙醇中充分分散。石墨烯具有较好的导热效果和较好的韧性。纳米微晶纤维素胶体具有均一稳定的状态,可在乙醇中充分分散,且胶体中的纳米微晶纤维素不仅具有优异的亲水性,还可具有三维网络状结构,可将纳米二氧化钛、石墨烯形成结合,更有利于将纳米二氧化钛、石墨烯一同在无纺布浸没于浸渍液的过程中附着到无纺布上,甚至进入到无纺布的空隙中。当纳米微晶纤维素胶体中纳米微晶纤维素的三维网状结构不够明显时,纤维素凝胶交联剂的添加可充分弥补这一缺陷,可与纳米微晶纤维素胶体形成相互配合,将纳米二氧化钛、石墨烯进行结合并且不易使纳米二氧化钛、石墨烯发生沉淀,进而提高浸渍液整体的悬浮能力。在制备无纺布的过程中,将上述重量份数范围内的纳米二氧化钛、纳米微晶纤维素胶体、石墨烯、纤维素凝胶交联剂以及乙醇进行相互混合,形成具有较高程度的分散和悬浮效果的浸渍液。当然,乙醇可以选择无水乙醇也可以选择乙醇水溶液,不仅起到溶剂的作用,还起到促进挥发从而达到使无纺布快速干燥的目的。热压处理后的无纺布具有一定的紧实感,但其中仍然具有孔隙;且经过扎针处理后,可使无纺布中具有更多的孔隙。在浸没于形成的浸渍液的过程中,再配合超声波处理,且在纳米微晶纤维素胶体和纤维素凝胶交联剂的共同配合下,将纳米二氧化钛、石墨烯进行充分悬浮并在最大程度上进入无纺布中,或者附着于无纺布中。且浸没后的无纺布在晾干后,可使其中的孔隙减少,提高添加的组分与无纺布的纤维之间的连接,不仅可提高无纺布层的整体强度,还有助于提高无纺布层的传热效果。进一步优选为:所述浸渍液中还包括重量份数为5-7份的壳聚糖茶多酚溶液,所述壳聚糖茶多酚溶液中,含有重量百分含量为6-8%的壳聚糖和重量百分含量为2-5%的茶多酚,剩余的为质量浓度为1%的乙酸溶液。通过采用上述技术方案,壳聚糖具有较好的亲水性和抑菌性;茶多酚是多酚类化合物的复合体,具有较好的抑菌、杀菌和抗氧化的。且在制备壳聚糖茶多酚溶液的过程中,可先将壳聚糖与乙酸溶液进行充分混合,再加入茶多酚,再次进行充分混合,将壳聚糖、茶多酚、乙酸溶液进行充分分散后,即可获得壳聚糖茶多酚溶液。在本发明中采用上述壳聚糖茶多酚溶液与浸渍液一同进行配合使用,当无纺布浸没于其中时,壳聚糖和茶多酚能被一同附着于无纺布上,使形成的无纺布层在具有传热、透气作用的同时,还不易受到空气中的水气的影响而出现细菌滋生的现象,即为起到较好的抑菌、杀菌效果。进一步优选为:所述无纺布采用棉、涤纶、丙纶、锦纶、氨纶、腈纶中的至少一种制成。通过采用上述技术方案,棉、涤纶、丙纶、锦纶、氨纶、腈纶均具有较好的抗菌性能,采用上述中的一种制成的无纺布,不仅具有良好的抗菌效果和整体强度,在浸没于浸渍液的过程中,其中的孔隙还能有效地被浸渍液中的有效成分填补,进而有效提高形成的无纺布层的传热效果。进一步优选为:所述浸渍液中,纤维素凝胶交联剂包括mba高效交联剂、硅烷偶联剂、1,2,3,4-丁烷四羧酸中的至少一种。通过采用上述技术方案,mba高效交联剂、硅烷偶联剂、1,2,3,4-丁烷四羧酸均具有较好的交联作用,有助于促进其与纳米微晶纤维素之间的进一步优选为:所述粘接层包括如下重量份数的组分:导热粘接胶78-90份;纳米纤维素气凝胶9-11份;硅胶0.02-0.06份;石墨0.005-0.01份。通过采用上述技术方案,导热粘接胶、硅胶、石墨均具有较好的导热效果,且导热粘接胶作为主要的载体,有助于促进硅胶、石墨分散于其中。且纳米纤维气凝胶的添加,有助于提高基层与无纺布层之间的连接效果。进一步优选为:所述粘接层中还包括重量份数为0.03-0.08份的纳米银。通过采用上述技术方案,纳米银具有纳米级的尺寸,并且具有较大的比表面积,进而有助于促进整体的其与组成粘接层的组分之间形成连接。且纳米银具有优异的导热效果,促进粘接层的导热性能,可将热量顺利地在基层与无纺布层之间进行传递。此外,纳米银具有优异的抗菌作用,使形成的传热透气膜具有更好的抗菌效果。进一步优选为:所述传热透气膜的厚度为3-5mm;所述传热透气膜中,基层、粘接层、无纺布层、亲水层之间的厚度比为(5-9)∶1∶(7-11)∶1。通过采用上述技术方案,上述厚度比范围内的基层、无纺布层、亲水层相互配合形成传热透气膜具有较好的拉伸强度,不易因为长期通过空气而造成传热透气膜的损坏,还可使空气通过其中并起到较好的传热和透气的作用。进一步优选为:所述传热透气膜的制备方法包括如下步骤:步骤1,在基层上均匀涂覆粘接层,将制备获得的无纺布层平铺于粘接层上并进行按压,使无纺布层与基层形成紧密的粘接;步骤2,在无纺布层的表面均匀喷洒纳米银,采用热压的方式将亲水层与无纺布层连接。通过采用上述技术方案,在制备传热透气膜时,先将基层、粘接层的材料、无纺布层、亲水层分别制备好,再进行逐步操作,无需像现有技术中需要制作专门的模具生产一体成型的透气膜,不仅节约了制作模具所需要的较高成本,还能够适应不同尺寸的需求,更加有利于加快生产效率并且扩大生产规模。为实现上述第二个目的,本发明提供了如下技术方案:一种用传热透气膜的传热透气组件,所述传热透气膜的外表面设置有支撑层,所述亲水层与支撑层之间通过热压形成连接;所述支撑层上设置有细肋,所述支撑层和细肋由ptfe材料制成相邻的所述细肋之间形成用于空气流通的流路。通过采用上述技术方案,通过热压处理,将传热透气膜的两个相对的外表面连接支撑层,且支撑层上设置有细肋,可为支撑层提供支撑作用,且相邻的细肋之间的流路可供空气通过。支撑层和细肋均由ptfe材料制成,使形成的传热透气组件具有较好的化学稳定性,有助于具有较长的使用寿命。综上所述,本发明具有以下有益效果:第一、本发明中,将无纺布充分浸没于浸渍液中,通过配合超声波处理,促进浸渍液中的成分与无纺布形成充分连接,促使获得的无纺布层具有更好的传热效果和拉伸强度。第二、本发明中,采用粘接层粘接基层和无纺布层,从而增加基层和无纺布层之间的连接效果,使基层、粘接层和无纺布层之间形成较好的传热效果;与此同时,其中添加的石墨、硅胶、纳米银等组分,在与导热粘接胶、纳米纤维素气凝胶相互配合使用时,虽然能够形成较好的连接,但粘接层的厚度较小,且纳米纤维素气凝胶与无纺布层之间的相容效果较好,亲水层与无纺布层之间的相容性也较好,因此,有利于使获得的传热透气膜具有良好的透气、抗菌效果的同时,还具有提高其拉伸强度的优势,在使用过程中不易破损。第三、在制备传热透气膜时,先将基层、粘接层的材料、无纺布层、亲水层分别制备好,再进行逐步操作,无需像现有技术中需要制作专门的模具生产一体成型的透气膜,不仅节约了制作模具所需要的较高成本,还能够适应不同尺寸的需求,更加有利于加快生产效率并且扩大生产规模。附图说明图1是现有技术中透气膜的结构示意图;图2是现有技术中透气组件的结构示意图;图3是本发明实施例1中传热透气膜的结构示意图;图4是本发明实施例14中传热透气组件的结构示意图。图中,1、基层;2、粘接层;3、无纺布层;4、亲水层;5、支撑层;6、隔膜;7、传热透气膜。具体实施方式以下结合附图和实施例对本发明作进一步详细说明。实施例1:传热透气膜,如图3所示,包括多孔质的基层1、覆盖于基层1的表面的无纺布层3以及覆盖于无纺布层3的表面的亲水层,且基层1与无纺布层3之间通过粘接层2连接。且传热透气膜7采用如下步骤制备而成:步骤1,在基层1上均匀涂覆粘接层2,将制备获得的无纺布层3平铺于粘接层2上并进行按压,使无纺布层3与基层1形成紧密的粘接;步骤2,在无纺布层3的表面均匀喷洒纳米银,采用热压的方式将亲水层与无纺布层3连接,最终使传热透气膜7的厚度为3mm;且传热透气膜7中,基层1、粘接层2、无纺布层3、亲水层之间的厚度比为5∶1∶7∶1。其中,亲水层为亲水性高分子薄膜;基层1为聚乙烯层。无纺布层3通过如下方式制备获得:步骤一,将纳米二氧化钛、纳米微晶纤维素胶体、石墨烯、纤维素凝胶交联剂、无水乙醇进行充分混合,获得浸渍液;步骤二,将经过热压处理、扎针处理后的无纺布充分浸没于浸渍液中,浸渍并超声波处理35min,取出,烘干,获得无纺布层3。其中,无纺布采用涤纶制成;浸渍液中各组分的重量如表1所示,浸渍液中的纤维素凝胶交联剂为mba高效交联剂。表1实施例1-6中浸渍液中各组分的重量(kg)与此同时,粘接层2由粘接胶涂覆获得,各组分的重量如表2所示。表2实施例1-6中粘接层中各组分的重量(kg)实施例2-6:传热透气膜,与实施例1的区别在于,浸渍液中各组分的重量如表1所示,粘接层2中各组分的重量如表2所示。、且其中,壳聚糖茶多酚溶液里含有重量百分含量为6%的壳聚糖和重量百分含量为5%的茶多酚,剩余的为质量浓度为1%的乙酸溶液。实施例7:传热透气膜,与实施例2的区别在于,传热透气膜7的厚度为4mm;传热透气膜7中,基层1、粘接层2、无纺布层3、亲水层之间的厚度比为7∶1∶7∶1,基层1为聚丙烯层。实施例8:传热透气膜,与实施例2的区别在于,传热透气膜7的厚度为5mm;传热透气膜7中,基层1、粘接层2、无纺布层3、亲水层之间的厚度比为9∶1∶11∶1,基层1为醋酸纤维层。实施例9:传热透气膜,与实施例2的区别在于,传热透气膜7的厚度为3mm;传热透气膜7中,基层1、粘接层2、无纺布层3、亲水层之间的厚度比为5∶1∶11∶1,基层1为聚四氟乙烯层。实施例10:传热透气膜,与实施例2的区别在于,浸渍液中,壳聚糖茶多酚溶液里含有重量百分含量为8%的壳聚糖和重量百分含量为2%的茶多酚,剩余的为质量浓度为1%的乙酸溶液。实施例11:传热透气膜,与实施例2的区别在于,浸渍液中,壳聚糖茶多酚溶液里含有重量百分含量为7%的壳聚糖和重量百分含量为3%的茶多酚,剩余的为质量浓度为1%的乙酸溶液。实施例12:传热透气膜,与实施例2的区别在于,无纺布采用棉制成;浸渍液中各组分的重量如表1所示,浸渍液中的纤维素凝胶交联剂为重量比为1∶1.3的mba高效交联剂、硅烷偶联剂。实施例13:传热透气膜,与实施例2的区别在于,无纺布采用腈纶制成;浸渍液中各组分的重量如表1所示,浸渍液中的纤维素凝胶交联剂为1,2,3,4-丁烷四羧酸。实施例14:传热透气膜,与实施例1的区别在于,无纺布未经过浸渍液浸泡。实施例15:用传热透气膜的传热透气组件,如图4所示,采用实施例1中的传热透气膜7,在其相对的两个表面通过热压的方式连接有支撑层5,且在背离传热透气膜7的一面一体成型设置有若干条细肋,相邻的细肋之间形成用于空气流通的流路,而支撑层5与细肋的材质均为ptfe。实施例16:用传热透气膜的传热透气组件,与实施例15的区别在于,采用实施例2中的传热透气膜7。对比例1:透气膜,与实施例1的区别在于,基层1与亲水性高分子薄膜通过一体成型的方式形成透气膜。对比例2:透气膜组件,与实施例14的区别在于,采用的透气膜为对比例1中的透气膜。试验一:传热效果试验试验样品:选取实施例1,将50片实施例1叠放作为试验样1,采用同样的方式,对实施例2-16、对比例1-2进行处理,分别获得试验样2-16、对照样1-2。试验方法:分别设置18组居天下电火盆卧式取暖器,分别在每组取暖器的散热口处水平置放试验样1-16、对照样1-2,且试验样1-16、对照样1-2分别与出风口之间的距离均为10cm,此处的平均温度调节为50℃。在取暖器开启1mmin后,分别检测最靠近散热口的试样样品(包括试验样1-16、对照样1-2)的温度以及最远离散热口的试验样品的温度,记录并进行分析。试验结果:试验样1-16、对照样1-2的温度情况如表3所示。表3试验样1-16、对照样1-2的温度情况由表3可知,试验样1-16中,最远离散热口的那片实施例1的温度较为接近50℃,而对照样1-2中,最远离散热口的那片对比例的温度较低。出现该情况的主要原因在于,透气膜的选择不同,对比例1中的透气膜的导热性能较差,导致在50片同样的对比例1叠放形成的对照样,难以进行较好地导热,最终造成最远离散热口的对比例1的温度难以得到充分提高。而对照样2是采用50片透气膜组件进行叠加形成,相邻的透气膜组件之间,透气膜与透气膜之间的间距更大,对导热的效率造成了一定程度上的降低,最终使最远离散热口的透气膜组件的温度不够高。在试验样1-16中,试验样2-6中最远离散热口的传热透气膜7的温度比试验样1中最远离散热口的传热透气膜7的温度更高,主要是由于在组成试验样2-6的实施例2-6中添加了纳米银,增加了实施例2-6以及试验样2-6的传热效果。而试验样12中最远离散热口的传热透气膜7的温度比试验样13中最远离散热口的传热透气膜7的温度更高,主要是由于在组成试验样12的传热透气膜7中,纤维素凝胶交联剂由mba高效交联剂、硅烷偶联剂共同配合组成,对提高导热性能起到更好的效果。试验样1中最远离散热口的传热透气膜7的温度比试验样14中最远离散热口的传热透气膜7的温度更高,说明对无纺布置于浸渍液中浸泡获得的无纺布层3具有更好的传热效果。试验样15-16中最远离散热口的传热透气膜7的温度比试验样1中最远离散热口的传热透气膜7的温度低,主要原因在于,试验样14-15是由用传热透气膜7的传热透气组件叠放组成,在相邻的传热透气组件中,相邻的传热透气膜7之间具有较大的间隙,易导致传热透气膜7之间的导热效果没有那么明显,因此,导致出现了试验样15-16中最远离散热口的传热透气膜7的温度较低的现象。试验二:透气效果试验试验样品:选取实施例1-14作为试验样1-14,选取对比例1作为对照样1。试验方法:采用透氧仪8001测定氧气透过系数,利用透湿仪permatrn-w3/61,测定水蒸气透过系数;在温度25℃与干燥环境下检测氧气透过系数,单位为(×10-15/cm3·m/m2·s·pa);在温度25℃与相对湿度50%环境下检测水蒸气透过系数,单位为(×10-11/g·m/m2·s·pa)。试验结果:试验样1-14、对照样1的氧气透过系数、水蒸气透过系数如表4所示。表4试验样1-14、对照样1的氧气透过系数、水蒸气透过系数试验样品氧气透过系数水蒸气透过系数试验样1252.1213.5试验样2246.5211.6试验样3246.7212.3试验样4246.3211试验样5246.9212.1试验样6246.3211.9试验样7246.5211.8试验样8246.7211.5试验样9246.6211.3试验样10246.5212.8试验样11246.5213.1试验样12245.1210.4试验样13246.2212.5试验样14255.3218.6对照样1232.6215.3由表4可知,试验样1-14的氧气透过系数高于对照样1的氧气透过系数,且试验样1-14的水蒸气透过系数高于对照样1的水蒸气透过系数,说明试验样1-14的氧气效率、水蒸气通过效率分别高于试验样1的氧气效率、水蒸气通过效率。出现上述区别的主要原因在于:组成对照样1的透气膜,虽然采用了基层1与亲水性高分子薄膜一体制造获得,虽然具有较好的透气效果,但仍然无法壁上添加有无纺布层3的试验样1-14所达到的透气效果。而组成试验样14的传热通气膜中,无纺布层3未经过浸渍液浸泡,传热通气膜达到的透气效果比采用浸渍液浸泡获得的无纺布层3组合形成的传热通气膜的透气效果更佳。试验三:拉伸强度试验试验样品:选取实施例1-13作为试验样1-13,选取对比例1作为对照样1。试验方法:分别对试验样1-13、对照样1进行拉伸强度的测试,记录并进行分析。试验结果:试验样1-13、对照样1的拉伸强度如表5所示。表5试验样1-13、对照样1的拉伸强度由表5可知,试验样1-13的纵向拉伸强度高于对照样1的纵向拉伸强度,且试验样1-13的横向拉伸强度高于对照样1的横向拉伸强度。且在试验样1-13中,试验样13的纵向拉伸强度低于试验样1-12的纵向拉伸强度,且横向拉伸强度低于试验样1-12的横向拉伸强度,出现上述区别的原因在于:试验样13中,无纺布层3未经过浸渍液浸泡,虽然无纺布层3经过热压获得,但其强度无法达到经过浸渍液浸泡后的无纺布层3所达到的拉伸强度,最终导致出现了试验样13的纵向拉伸强度、横向拉伸强度均较低的现象。因此,也说明浸渍液中所添加的组分,有助于跟无纺布形成充分连接且使无纺布层3达到较好的拉伸强度。本具体实施例仅仅是对本发明的解释,其并不是对本发明的限制,本领域技术人员在阅读完本说明书后可以根据需要对本实施例做出没有创造性贡献的修改,但只要在本发明的权利要求范围内都受到专利法的保护。当前第1页1 2 3 

技术特征:

1.一种传热透气膜,其特征在于,包括多孔质的基层(1)、覆盖于基层(1)的表面的无纺布层(3)以及覆盖于无纺布层(3)的表面的亲水层;所述基层(1)与无纺布层(3)之间通过粘接层(2)连接;

所述亲水层为亲水性高分子薄膜;

所述基层(1)包括聚乙烯层、聚丙烯层、醋酸纤维层、聚四氟乙烯层中的一种。

2.根据权利要求1所述的传热透气膜,其特征在于,所述无纺布层(3)通过如下方式制备获得:

步骤一,将重量份数为0.05-0.1份的纳米二氧化钛、0.3-0.4份的纳米微晶纤维素胶体、0.005-0.008份的石墨烯、0.2-0.5份的纤维素凝胶交联剂、90-95份的乙醇进行充分混合,获得浸渍液;

步骤二,将经过热压处理、扎针处理后的无纺布充分浸没于浸渍液中,浸渍并超声波处理30-45min,取出,烘干,获得无纺布层(3)。

3.根据权利要求2所述的传热透气膜,其特征在于,所述浸渍液中还包括重量份数为5-7份的壳聚糖茶多酚溶液,所述壳聚糖茶多酚溶液中,含有重量百分含量为6-8%的壳聚糖和重量百分含量为2-5%的茶多酚,剩余的为质量浓度为1%的乙酸溶液。

4.根据权利要求2所述的传热透气膜,其特征在于,所述无纺布采用棉、涤纶、丙纶、锦纶、氨纶、腈纶中的至少一种制成。

5.根据权利要求2所述的传热透气膜,其特征在于,所述浸渍液中,纤维素凝胶交联剂包括mba高效交联剂、硅烷偶联剂、1,2,3,4-丁烷四羧酸中的至少一种。

6.根据权利要求1所述的传热透气膜,其特征在于,所述粘接层(2)包括如下重量份数的组分:

导热粘接胶78-90份;

纳米纤维素气凝胶9-11份;

硅胶0.02-0.06份;

石墨0.005-0.01份。

7.根据权利要求1所述的传热透气膜,其特征在于,所述粘接层(2)中还包括重量份数为0.03-0.08份的纳米银。

8.根据权利要求1所述的传热透气膜,其特征在于,所述传热透气膜(7)的厚度为3-5mm;所述传热透气膜(7)中,基层(1)、粘接层(2)、无纺布层(3)、亲水层之间的厚度比为(5-9):1:(7-11):1。

9.根据权利要求1所述的传热透气膜,其特征在于,所述传热透气膜(7)的制备方法包括如下步骤:

步骤1,在基层(1)上均匀涂覆粘接层(2),将制备获得的无纺布层(3)平铺于粘接层(2)上并进行按压,使无纺布层(3)与基层(1)形成紧密的粘接;

步骤2,在无纺布层(3)的表面均匀喷洒纳米银,采用热压的方式将亲水层与无纺布层(3)连接。

10.权利要求1-9中任意一项所述的一种用传热透气膜的传热透气组件,其特征在于,所述传热透气膜(7)的外表面设置有支撑层(5),所述亲水层与支撑层(5)之间通过热压形成连接;所述支撑层(5)上设置有细肋,所述支撑层(5)和细肋由ptfe材料制成相邻的所述细肋之间形成用于空气流通的流路。

技术总结

本发明公开了一种传热透气膜及用传热透气膜的传热透气组件。该传热透气膜包括多孔质的基层、覆盖于基层的表面的无纺布层以及覆盖于无纺布层的表面的亲水层;所述基层与无纺布层之间通过粘接层连接;亲水层为亲水性高分子薄膜;基层包括聚乙烯层、聚丙烯层、醋酸纤维层、聚四氟乙烯层中的一种。该传热透气膜具有较好的传热效果、透气效果和强度的优点;该传热透气组件其具有较好的传热效果、透气效果的优点。

技术研发人员:吴海啸;王健银

受保护的技术使用者:杭州秋瓷超导科技有限公司

技术研发日:.12.10

技术公布日:.02.25

如果觉得《传热透气膜及用传热透气膜的传热透气组件的制作方法》对你有帮助,请点赞、收藏,并留下你的观点哦!

本内容不代表本网观点和政治立场,如有侵犯你的权益请联系我们处理。
网友评论
网友评论仅供其表达个人看法,并不表明网站立场。