糖尿病康复,内容丰富有趣,生活中的好帮手!
糖尿病康复 > 多元函数极限求法(二元函数)

多元函数极限求法(二元函数)

时间:2024-03-09 12:11:19

相关推荐

多元函数极限求法(二元函数)

夹逼准则

例一:求极限lim⁡x→0y→0sin⁡(x2y+y4)x2+y2\lim \limits_{x \rightarrow 0 \atop y \rightarrow 0} \frac{\sin \left(x^{2} y+y^{4}\right)}{x^{2}+y^{2}}y→0x→0​lim​x2+y2sin(x2y+y4)​

解析:因为∣sin⁡x∣≤∣x∣|\sin x| \leq|x|∣sinx∣≤∣x∣,因为有

0≤∣sin⁡(x2y+y4)x2+y2∣≤∣x2y+y4x2+y2∣0 \leq\left|\frac{\sin \left(x^{2} y+y^{4}\right)}{x^{2}+y^{2}}\right| \leq\left|\frac{x^{2} y+y^{4}}{x^{2}+y^{2}}\right| 0≤∣∣∣∣∣​x2+y2sin(x2y+y4)​∣∣∣∣∣​≤∣∣∣∣​x2+y2x2y+y4​∣∣∣∣​

又因为

∣x2y+y4x2+y2∣≤x2x2+y2×∣y∣+y2x2+y2×y2≤∣y∣+y2→0\begin{aligned} \left|\frac{x^{2} y+y^{4}}{x^{2}+y^{2}}\right| & \leq \frac{x^{2}}{x^{2}+y^{2}} \times|y|+\frac{y^{2}}{x^{2}+y^{2}} \times y^{2} \\ & \leq|y|+y^{2} \rightarrow 0 \end{aligned} ∣∣∣∣​x2+y2x2y+y4​∣∣∣∣​​≤x2+y2x2​×∣y∣+x2+y2y2​×y2≤∣y∣+y2→0​

由夹逼准则知,极限为0

例2:求极限lim⁡x→+∞y→+∞(xyx2+y2)x2\lim \limits_{x \rightarrow+\infty \atop y \rightarrow+\infty}\left(\frac{x y}{x^{2}+y^{2}}\right)^{x^{2}}y→+∞x→+∞​lim​(x2+y2xy​)x2

解析:注意到

0≤xyx2+y2≤12(x2+y2)x2+y2=120 \leq \frac{x y}{x^{2}+y^{2}} \leq \frac{\frac{1}{2}\left(x^{2}+y^{2}\right)}{x^{2}+y^{2}}=\frac{1}{2} 0≤x2+y2xy​≤x2+y221​(x2+y2)​=21​

所以

0≤(xyx2+y2)x2≤(12)x2→00 \leq\left(\frac{x y}{x^{2}+y^{2}}\right)^{x^{2}} \leq\left(\frac{1}{2}\right)^{x^{2}} \rightarrow 0 0≤(x2+y2xy​)x2≤(21​)x2→0

由夹逼准则知极限为0

例三求极限lim⁡x→∞y→∞x+yx2−xy+y2\lim \limits_{x \rightarrow \infty \atop y \rightarrow \infty} \frac{x+y}{x^{2}-x y+y^{2}}y→∞x→∞​lim​x2−xy+y2x+y​

解法一:由于

∣x+yx2−xy+y2∣≤∣1y+1x∣∣xy−1+yx∣≤∣1y+1x∣∣xy+yx∣−1≤∣1y+1x∣→0\left|\frac{x+y}{x^{2}-x y+y^{2}}\right| \leq \frac{\left|\frac{1}{y}+\frac{1}{x}\right|}{\left|\frac{x}{y}-1+\frac{y}{x}\right|} \leq \frac{\left|\frac{1}{y}+\frac{1}{x}\right|}{\left|\frac{x}{y}+\frac{y}{x}\right|-1} \leq\left|\frac{1}{y}+\frac{1}{x}\right| \rightarrow 0 ∣∣∣∣​x2−xy+y2x+y​∣∣∣∣​≤∣∣∣​yx​−1+xy​∣∣∣​∣∣∣​y1​+x1​∣∣∣​​≤∣∣∣​yx​+xy​∣∣∣​−1∣∣∣​y1​+x1​∣∣∣​​≤∣∣∣∣​y1​+x1​∣∣∣∣​→0

解法二:由于

∣x+yx2−xy+y2∣≤2∣x+y∣x2+y2≤2∣x∣+∣y∣x2+y2≤2(1∣x∣+1∣y∣)→0\left|\frac{x+y}{x^{2}-x y+y^{2}}\right| \leq \frac{2|x+y|}{x^{2}+y^{2}} \leq 2 \frac{|x|+|y|}{x^{2}+y^{2}} \leq 2\left(\frac{1}{|x|}+\frac{1}{|y|}\right) \rightarrow 0 ∣∣∣∣​x2−xy+y2x+y​∣∣∣∣​≤x2+y22∣x+y∣​≤2x2+y2∣x∣+∣y∣​≤2(∣x∣1​+∣y∣1​)→0

故由夹逼准则知极限为0

解法三

注意到x2+y2−xy≥2xy−xy=xyx^{2}+y^{2}-x y \geq 2 x y-x y=x yx2+y2−xy≥2xy−xy=xy

由于

∣x+yx2−xy+y2∣≤∣x+yxy∣≤(1∣y∣+1∣x∣)→0\left|\frac{x+y}{x^{2}-x y+y^{2}}\right| \leq\left|\frac{x+y}{x y}\right| \leq\left(\frac{1}{|y|}+\frac{1}{|x|}\right) \rightarrow 0 ∣∣∣∣​x2−xy+y2x+y​∣∣∣∣​≤∣∣∣∣​xyx+y​∣∣∣∣​≤(∣y∣1​+∣x∣1​)→0

所以极限为0

极坐标

例题一:求极限lim⁡(x,y)→(0,0)x3+y3x2+y2\lim \limits_{(x, y) \rightarrow(0,0)} \frac{x^{3}+y^{3}}{x^{2}+y^{2}}(x,y)→(0,0)lim​x2+y2x3+y3​

解析

令x=ρcos⁡θ,y=ρsin⁡θx=\rho \cos \theta, y=\rho \sin \thetax=ρcosθ,y=ρsinθ,则

lim⁡(x,y)→(0,0)x3+y3x2+y2=lim⁡ρ→0ρ3(cos⁡3θ+sin⁡3θ)ρ2=lim⁡ρ→0ρ(cos⁡3θ+sin⁡3θ)=0\lim _{(x, y) \rightarrow(0,0)} \frac{x^{3}+y^{3}}{x^{2}+y^{2}}=\lim _{\rho \rightarrow 0} \frac{\rho^{3}\left(\cos ^{3} \theta+\sin ^{3} \theta\right)}{\rho^{2}}=\lim _{\rho \rightarrow 0} \rho\left(\cos ^{3} \theta+\sin ^{3} \theta\right)=0 (x,y)→(0,0)lim​x2+y2x3+y3​=ρ→0lim​ρ2ρ3(cos3θ+sin3θ)​=ρ→0lim​ρ(cos3θ+sin3θ)=0

化为一元函数

例题一:求极限lim⁡x→+∞y→+∞(x2+y2)e−(x+y)\lim \limits_{x \rightarrow+\infty \atop y \rightarrow+\infty}\left(x^{2}+y^{2}\right) e^{-(x+y)}y→+∞x→+∞​lim​(x2+y2)e−(x+y)

由于0<(x2+y2)ex+y=x2ex+y+y2ex+y≤x2ex+y2ey0<\frac{\left(x^{2}+y^{2}\right)}{e^{x+y}}=\frac{x^{2}}{e^{x+y}}+\frac{y^{2}}{e^{x+y}} \leq \frac{x^{2}}{e^{x}}+\frac{y^{2}}{e^{y}}0<ex+y(x2+y2)​=ex+yx2​+ex+yy2​≤exx2​+eyy2​

易知x2ex、y2ey\frac{x^{2}}{e^{x}}、\frac{y^{2}}{e^{y}}exx2​、eyy2​都为0,所以极限为0

例题二:求极限lim⁡(x,y)→(0,0)x2ln⁡(x2+y2)=0\lim \limits_{(x, y) \rightarrow(0,0)} x^{2} \ln \left(x^{2}+y^{2}\right)=0(x,y)→(0,0)lim​x2ln(x2+y2)=0

解析:因为

lim⁡(x,y)→(0,0)x2ln⁡(x2+y2)=lim⁡(x,y)→(0,0)x2x2+y2(x2+y2)ln⁡(x2+y2)\lim \limits_{(x, y) \rightarrow(0,0)} x^{2} \ln \left(x^{2}+y^{2}\right)=\lim \limits_{(x, y) \rightarrow(0,0)} \frac{x^{2}}{x^{2}+y^{2}}\left(x^{2}+y^{2}\right) \ln \left(x^{2}+y^{2}\right)(x,y)→(0,0)lim​x2ln(x2+y2)=(x,y)→(0,0)lim​x2+y2x2​(x2+y2)ln(x2+y2)

令x2+y2=t\sqrt{x^{2}+y^{2}}=tx2+y2​=t

则有

lim⁡(x,y)→(0,0)(x2+y2)ln⁡(x2+y2)=lim⁡t→0+tln⁡t=lim⁡t→0+ln⁡t1/t=lim⁡t→0+1/t−1/t2=0\begin{aligned} \lim _{(x, y) \rightarrow(0,0)}\left(x^{2}+y^{2}\right) \ln \left(x^{2}+y^{2}\right) &=\lim _{t \rightarrow 0^{+}} t \ln t \\ &=\lim _{t \rightarrow 0^{+}} \frac{\ln t}{1 / t}=\lim _{t \rightarrow 0^{+}} \frac{1 / t}{-1 / t^{2}}=0 \end{aligned} (x,y)→(0,0)lim​(x2+y2)ln(x2+y2)​=t→0+lim​tlnt=t→0+lim​1/tlnt​=t→0+lim​−1/t21/t​=0​

例题三:求极限lim⁡(x,y)→(0,0)xln⁡(x2+y2)\lim \limits_{(x, y) \rightarrow(0,0)} x \ln \left(x^{2}+y^{2}\right)(x,y)→(0,0)lim​xln(x2+y2)

解析:因为

lim⁡x→0y→0xln⁡(x2+y2)=2lim⁡x→0y→0xx2+y2x2+y2ln⁡x2+y2\lim \limits_{x \rightarrow 0 \atop y \rightarrow 0} x \ln \left(x^{2}+y^{2}\right)=2 \lim \limits_{x \rightarrow 0 \atop y \rightarrow 0} \frac{x}{\sqrt{x^{2}+y^{2}}} \sqrt{x^{2}+y^{2}} \ln \sqrt{x^{2}+y^{2}}y→0x→0​lim​xln(x2+y2)=2y→0x→0​lim​x2+y2​x​x2+y2​lnx2+y2​

令x2+y2=t\sqrt{x^{2}+y^{2}}=tx2+y2​=t,那么

lim⁡(x,y)→(0,0)x2+y2ln⁡x2+y2=lim⁡t→0+tln⁡t=lim⁡t→0+ln⁡t1/t=lim⁡t→0+1/t−1/t2=0\begin{aligned} \lim _{(x, y) \rightarrow(0,0)} \sqrt{x^{2}+y^{2}} \ln \sqrt{x^{2}+y^{2}} &=\lim _{t \rightarrow 0^{+}} t \ln t \\ &=\lim _{t \rightarrow 0^{+}} \frac{\ln t}{1 / t}=\lim _{t \rightarrow 0^{+}} \frac{1 / t}{-1 / t^{2}}=0 \end{aligned} (x,y)→(0,0)lim​x2+y2​lnx2+y2​​=t→0+lim​tlnt=t→0+lim​1/tlnt​=t→0+lim​−1/t21/t​=0​

所以lim⁡(x,y)→(0,0)xln⁡(x2+y2)=0\lim \limits_{(x, y) \rightarrow(0,0)} x \ln \left(x^{2}+y^{2}\right)=0(x,y)→(0,0)lim​xln(x2+y2)=0

例题四:求极限lim⁡(x,y)→(0,0)x2+y2−sin⁡x2+y2(x2+y2)3/2\lim \limits_{(x, y) \rightarrow(0,0)} \frac{\sqrt{x^{2}+y^{2}}-\sin \sqrt{x^{2}+y^{2}}}{\left(x^{2}+y^{2}\right)^{3 / 2}}(x,y)→(0,0)lim​(x2+y2)3/2x2+y2​−sinx2+y2​​

解析

lim⁡(x,y)→(0,0)x2+y2−sin⁡x2+y2(x2+y2)3/2x2+y2=ρρ→0ρ−sin⁡ρρ3=lim⁡ρ→0ρ−(ρ−16ρ3+o(ρ3))ρ3=16\begin{aligned} \lim _{(x, y) \rightarrow(0,0)} \frac{\sqrt{x^{2}+y^{2}}-\sin \sqrt{x^{2}+y^{2}}}{\left(x^{2}+y^{2}\right)^{3 / 2}} & \frac{\sqrt{x^{2}+y^{2}}=\rho}{\rho \rightarrow 0} \frac{\rho-\sin \rho}{\rho^{3}} \\ &=\lim _{\rho \rightarrow 0} \frac{\rho-\left(\rho-\frac{1}{6} \rho^{3}+o\left(\rho^{3}\right)\right)}{\rho^{3}}=\frac{1}{6} \end{aligned} (x,y)→(0,0)lim​(x2+y2)3/2x2+y2​−sinx2+y2​​​ρ→0x2+y2​=ρ​ρ3ρ−sinρ​=ρ→0lim​ρ3ρ−(ρ−61​ρ3+o(ρ3))​=61​​

如果觉得《多元函数极限求法(二元函数)》对你有帮助,请点赞、收藏,并留下你的观点哦!

本内容不代表本网观点和政治立场,如有侵犯你的权益请联系我们处理。
网友评论
网友评论仅供其表达个人看法,并不表明网站立场。